Skip to content

Abstract

Visualizing Data Using Embeddings

Visualization techniques are essential tools for every data scientist. Unfortunately, the majority of visualization techniques can only be used to inspect a limited number of variables of interest simultaneously. As a result, these techniques are not suitable for big data that is very high-dimensional. An effective way to visualize high-dimensional data is to represent each data object by a two-dimensional point in such a way that similar objects are represented by nearby points, and that dissimilar objects are represented by distant points. The resulting two-dimensional points can be visualized in a scatter plot. This leads to a map of the data that reveals the underlying structure of the objects, such as the presence of clusters. The talk presents techniques to embed high-dimensional objects in a two-dimensional map. In particular it focuses on a technique called t-Distributed Stochastic Neighbor Embedding (t-SNE) that produces substantially better results than alternative techniques. We demonstrate the value of t-SNE in domains such as computer vision and bioinformatics. In addition, we show how to scale up t-SNE to sets with millions of objects, and we present variants of the technique that can visualize objects of which the similarities cannot appropriately be modeled in a single map (such as semantic similarities between words) and that can visualize data based on partial similarity rankings of the form “A is more similar to B than to C”.

Wednesday, February 10, 2016
CSE 1202

Read Next

Bjorn Hartmann (UC Berkeley)

Wednesday, May 17, 2017 at 4:00 PM
Interactive Design Tools for the Maker Movement

Preparing the Public for Automation

June 20, 2018 from 9 a.m. – 4 p.m. 
The Qualcomm Institute at the University of California, San Diego

Laurens van der Maaten (Facebook)

Wednesday, February 10, 2016 4:00 PM
Visualizing Data Using Embeddings
Back To Top